Respuesta :

frika

A real-valued univariate function f=f(x) has a jump discontinuity at a point [tex]x_0[/tex] in its domain provided that

[tex]\lim \limits_{x\to x_0^-}f(x)=A_1[/tex]

and

[tex]\lim \limits_{x\to x_0^+}f(x)=A_2[/tex]

both exist and that [tex]A_1\neq A_2.[/tex]

As you can see at x=-3,

[tex]\lim \limits_{x\to -3^-}f(x)=6,[/tex] [tex]\lim \limits_{x\to -3^+}f(x)=9[/tex] and [tex]6\neq 9.[/tex]

Therefore, there is a jump discontinuity at x=-3.

Answer: correct choice is A.

Q&A Education