Let f: double-struck R4 → double-struck R and c(t): double-struck R → double-struck R4. Suppose ∇f(1, 1, π, e6) = (0, 1, 5, −2), c(π) = (1, 1, π, e6), and c'(π) = (19, 11, 0, 1). Find d(f ∘ c)/dt when t = π.

Respuesta :

d ( f o c) / dt = 9

( solution is attached below)

Ver imagen ashimasood66

[tex]\rm \dfrac{d(f \circ c)}{dt} = 9 \;\;\;\;\;\;\;\;\;\; (when\; t =\pi )[/tex]

Step-by-step explanation:

Given :

[tex]\rm f:R_4 \to R[/tex]

[tex]\rm c(t) : R \to R_4[/tex]

[tex]\bigtriangledown f(1,1,\pi ,e^6) = (0,1,5,-2)\\c(\pi )= (1,1,\pi ,e^6)\\c'(\pi ) = (19,11,0,1)[/tex]

Solution :

[tex]\rm \dfrac{d(f \circ c)}{dt} = \dfrac {d}{dt} f(c(t)) = f'(c(t).c'(t))[/tex]

[tex]\rm \bigtriangledown f(c(t)) = c'(t)[/tex]

[tex]\rm \bigtriangledown f(c(t)) = \rm \bigtriangledown f((1,1,\pi,e^6). (19,11,0,1)) \;\;\;\;\;\;\;(when \;t=\pi )[/tex]

0 +11+0-2 = 9

Therefore,

[tex]\rm \dfrac{d(f \circ c)}{dt} = 9[/tex]

For more information, refer to the link given below

https://brainly.com/question/14418346?referrer=searchResults

Q&A Education