here two forces are acting simultaneously
[tex]F_1 = 475 N[/tex] 25^0 W of N
[tex]F_2 = 40 N[/tex] 60^0 E of N
now we will write the two forces in components form
[tex]F_1 = -475 sin25 \hat i + 475 cos25 \hat j[/tex]
[tex]F_1 = -200.7 \hat i + 430.5 \hat j[/tex]
[tex]F_2 = 40sin60 \hat i + 40 cos60 \hat j[/tex]
[tex]F_2 = 34.6 \hat i + 20 \hat j[/tex]
now net force on it will be
[tex]F = F_1 + F_2 [/tex]
[tex]F = (-200.7 + 34.6) \hat i + (430.5 + 20)\hat j[/tex]
[tex]F = -166.1 \hat i + 450.5 \hat j[/tex]
so net force is of magnitude
[tex]F = \sqrt{166.1^2 + 450.5^2}[/tex]
[tex]F = 480.1 N[/tex]
direction is given as
[tex]\theta = tan^{-1}\frac{166.1}{450.5} = 20.2 degree[/tex]
so net force is 480.1 N at 20.2 degree W of N
now the acceleration is given by Newton's II law
[tex]F = ma[/tex]
[tex]480.1 = 80 a[/tex]
[tex]a = 6 m/s^2[/tex]