Respuesta :

Answer:

a=0;b=9;c=0;d=√x

[tex]\int_0^3\int_{y^2}^{9}y\sin(x^2)dxdy=\int_{0}^{3}\int_{0}^{\sqrt{x}}y\sin(x^2)dydx[/tex]

Step-by-step explanation:

Given:

[tex]\int_0^3\int_{y^2}^{9}y\sin(x^2)dxdy=\int_{a}^{b}\int_{c}^{d}y\sin(x^2)dydx[/tex]

We need to change order of integration dxdy to dydx

[tex]0\leq y\leq 3;y^2\leq x\leq 9[/tex]

We have to change limit of x and y to change in order of integration

Please see the attachment for graph and order of integration.

[tex]0\leq x\leq 9;0\leq y\leq \sqrt{x}[/tex]

[tex]\int_0^3\int_{y^2}^{9}y\sin(x^2)dxdy=\int_{0}^{3}\int_{0}^{\sqrt{x}}y\sin(x^2)dydx[/tex]

Therefore,

a=0

b=9

c=0

d=√x


Ver imagen isyllus
Q&A Education