Respuesta :

Answer:

[tex]a=64,b=0[/tex]

Step-by-step explanation:

Given;

[tex]z=-1-\sqrt{3}i[/tex]

[tex]r=\sqrt{(-1)^2+(-\sqrt{3})^2} =2[/tex]

[tex]\phi =\tan^{-1}(\frac{-\sqrt{3} }{-1})=\frac{\pi}{3}[/tex]

[tex]\arg(z)=2\pi-\frac{\pi}{3} =\frac{5\pi}{3}[/tex]

Apply DeMoivre's Theorem;

[tex]z^n=r^n(\cos(n \theta) + i\sin(n \theta))[/tex]

[tex]\Rightarrow z^6=2^6(\cos(6\times \frac{5\pi}{3}) + i\sin(6\times \frac{5\pi}{3}))[/tex]

[tex]\Rightarrow z^6=64(\cos(10\pi) + i\sin(10\pi))[/tex]

[tex]\Rightarrow z^6=64(1+ 0i)[/tex]

[tex]\Rightarrow z^6=64+ 0i[/tex]

[tex]\therefore a=64,b=0[/tex]

Q&A Education