Respuesta :

Answer:

A. 20.

Step-by-step explanation:

The denominators 49 and 100  are the squares of 1/2 of the lengths of the minor and major axis.  The standard form is x^2/a^2 + y^2/b^2 = 1  so

a = 2 * √49 and b = 2 * √100.

The length of the major axis is therefore    2* √100

= 2 * 10

= 20 (answer).

Answer:  A. 20

Step-by-step explanation:

For the general equation of ellipse :-

[tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex]

If a > b , then the length of major axis = 2a

If b> a , then the length of major axis = 2b

The given equation : [tex]\dfrac{(x-3)^2}{49}+\dfrac{(y+6)^2}{100}=1[/tex]

Which can be written as :

[tex]\dfrac{(x-3)^2}{7^2}+\dfrac{(y+6)^2}{10^2}=1[/tex]

Here 10 >7 , then the length of major axis =2(10)=20 units

Q&A Education