ABCDEF and EHG are regular polygons. If mHGJ=220* on the exterior of the polygon, mEGJ is congruent to mGED, and mCDJ=136* on the exterior of the polygon, what is the measure of GJD?
Answer:
96 deg
Step-by-step explanation:
Polygon ABCDE is a regular hexagon. The sum of the measures of the interior angles is (n - 2)180 = (6 - 2)180 = 4(180) = 720. Since it's a regular hexagon, each interior angle measures 720/6 = 120 deg.
For the interior angle, m<CDE = 120
On the exterior of the polygon, m<CDJ = 136
m<CDE + m<CDJ + m<EDJ = 360
120 + 136 + m<EDJ = 360
m<EDJ + 256 = 360
m<EDJ = 104 deg
Triangle EHG is regular. The sum of the measures of the angles of a triangle is 180. For a regular triangle, each angle measures 60 deg.
m<EGH = 60
For exterior angle m<HGJ = 220
m<HGJ(exterior) + m<EGH + m<EGJ = 360
220 + 60 + m<EGJ = 360
m<EGJ + 280 = 360
m<EGJ = 80
m<EGJ = m<GED, so
m<GED = 80
Polygon DEGJ is a quadrilateral. The sum of the measures of its interior angles is 360 deg.
m<EGJ + m<GED + m<EDJ + m<GJD = 360
80 + 80 + 104 + m<GJD = 360
m<GJD + 264 = 360
m<GJD = 96 deg
Answer:
The measure of angle GJD is 96°.
Step-by-step explanation:
It is given that HGJ=220° on the exterior of the polygon, EGJ is congruent to GED, and CDJ=136° on the exterior of the polygon.
Each side and each interior angle of a regular polygon are same.
It is given that ABCDEF and EHG are regular polygons. It means each interior angle of regular hexagon ABCDEF is 120° and each interior angle of regular triangle EHG is 60°.
[tex]\angle EGH+\angle EGJ+\angle HGJ(exterior)=360^{\circ}[/tex]
[tex]60^{\circ}+\angle EGJ+220^{\circ}=360^{\circ}[/tex]
[tex]\angle EGJ+280^{\circ}=360^{\circ}[/tex]
[tex]\angle EGJ=360^{\circ}-280^{\circ}[/tex]
[tex]\angle EGJ=80^{\circ}[/tex]
[tex]\angle GED=\angle EGJ=80^{\circ}[/tex]
[tex]\angle CDE+\angle EDJ+\angle CDJ(exterior)=360^{\circ}[/tex]
[tex]120^{\circ}+\angle EDJ+136^{\circ}=360^{\circ}[/tex]
[tex]\angle EDJ+256^{\circ}=360^{\circ}[/tex]
[tex]\angle EDJ=360^{\circ}-256^{\circ}[/tex]
[tex]\angle EDJ=104^{\circ}[/tex]
The sum of all interior angles of a quadrilateral is 360°.
[tex]\angle GED=\angle EGJ+\angle EDJ+\angle GJD=360^{\circ}[/tex]
[tex]80^{\circ}+80^{\circ}+104^{\circ}+\angle GJD=360^{\circ}[/tex]
[tex]264^{\circ}+\angle GJD=360^{\circ}[/tex]
[tex]\angle GJD=360^{\circ}-264^{\circ}[/tex]
[tex]\angle GJD=96^{\circ}[/tex]
Therefore the measure of angle GJD is 96°.