Respuesta :

Answer:

[tex]f(n)=f(n-1)-6[/tex], where [tex]f(1)=5[/tex] and [tex]n\:>\:1[/tex]

Step-by-step explanation:

The terms of the sequence are:

[tex]5,-1,-7,-13,-19[/tex]

The first term of this sequence is [tex]f(1)=5[/tex].

There is a constant difference among the terms.

This constant difference can determined by subtracting a previous term from a subsequent term.

[tex]d=-1-5=-6[/tex]

The general term of this arithmetic sequence is given  recursively by [tex]f(n)=f(n-1)+d[/tex]

We substitute the necessary values to obtain:

[tex]f(n)=f(n-1)+-6[/tex]

Or

[tex]f(n)=f(n-1)-6[/tex], where [tex]f(1)=5[/tex] and [tex]n\:>\:1[/tex]

Answer:

C

Step-by-step explanation:

Q&A Education