Step-by-step explanation:
The point-slope of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
We have the slope m = 71 and the point (-2, 4).
Substitute:
[tex]y-4=71(x-(-2))\\\\\bold{y-4=71(x+2)}[/tex]
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
Convert:
[tex]y-4=71(x+2)[/tex] use the distributive property
[tex]y-4=71x+142[/tex] add 4 to both sides
[tex]\bold{y=71x+146}[/tex]
The standard form of an equation of a line:
[tex]Ax+By=C[/tex]
Convert:
[tex]y=71x+146[/tex] subtract 71x from both sides
[tex]-71x+y=146[/tex] change the signs
[tex]\bold{71x-y=-146}[/tex]
The general form of an equation of a line:
[tex]Ax+By+C=0[/tex]
Convert:
[tex]71x-y=-146[/tex] add 146 to both sides
[tex]\bold{71x-y+146=0}[/tex]