Respuesta :

Answer:

1/2

Explanation:

The energy stored in a capacitor is given by:

[tex]U=\frac{1}{2}CV^2[/tex]

where

C is the capacitance

V is the potential difference

For capacitor 1, we have

[tex]U_1=\frac{1}{2}C_1V_1^2[/tex]

Capacitor 2 has

[tex]C_2 = \frac{C_1}{2}[/tex] (half the capacitance of capacitor 1)

[tex]V_2 = 2 V_1[/tex] (twice the potential difference of capacitor 1)

So the energy of capacitor 2 is

[tex]U_2=\frac{1}{2}C_2V_2^2=\frac{1}{2}(\frac{C_1}{2})(2V_1)^2=C_1 V_1^2[/tex]

So, the ratio between the two energies is

[tex]\frac{U_1}{U_2}=\frac{\frac{1}{2}C_1 V_1^2}{C_1 V_1^2}=\frac{1}{2}[/tex]

Q&A Education