Answer: 0.9890
Step-by-step explanation:
Given : Mean : [tex]\mu=50[/tex]
Standard deviation : [tex]\sigma =7[/tex]
We assume the random variable X is normally distributed
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x=34.
[tex]z=\dfrac{34-50}{7}=-2.2857142\approx-2.29[/tex]
The p-value =[tex]P(z>-2.29)=1-P(z<-2.29)[/tex]
[tex]=1-0.0110107=0.9889893\approx0.9890[/tex]
Hence, [tex]P(X>34)=0.9890[/tex]