An object is dropped from an altitude of one Earth radiusabove Earth's surface. If M is the mass of Earth and R is itsradius the speed of the object just before it hits Earth isgiven by: A. √GM/R B. √GM/2R C. √2GM/R D. √GM/R2 E. √GM/2R2

Respuesta :

Answer:

The speed of the object just before it hits Earth is  [tex]\sqrt{\dfrac{GM}{R}}[/tex]

(A) is correct option.

Explanation:

Given that,

M = mass of earth

R = radius of earth

The potential energy at height above the surface of the earth

[tex]P.E=-\dfrac{GmM}{R+h}[/tex]

The kinetic energy at height above the surface of the earth

[tex]K.E = 0[/tex]

The total energy at height above the surface of the earth

[tex]E = K.E+P.E[/tex]

[tex]E = -\dfrac{GmM}{R+h}[/tex]....(I)

The total energy at the surface of the earth

[tex]E'=\dfrac{1}{2}mv^2-\dfrac{GmM}{R}[/tex]....(II)

We need to calculate the speed of the object  just before it hits Earth

From equation (I) and (II)

[tex]-\dfrac{GmM}{R+h}=\dfrac{1}{2}mv^2-\dfrac{GmM}{R}[/tex]

Here, h = R

[tex]-\dfrac{GmM}{2R}=\dfrac{1}{2}mv^2-\dfrac{GmM}{R}[/tex]

[tex]v= \sqrt{\dfrac{GM}{R}}[/tex]

Hence, The speed of the object just before it hits Earth is  [tex]\sqrt{\dfrac{GM}{R}}[/tex].

Q&A Education