Respuesta :

For this case we have the following system:

[tex]y> \frac {1} {3} x + 1\\y> 2x-3[/tex]

To solve, we first change the inequality for an equality:

[tex]y = \frac {1} {3} x + 1\\y = 2x-3[/tex]

Matching we have:

[tex]\frac {1} {3} x + 1 = 2x-3\\\frac {1} {3} x-2x = -3-1\\- \frac {5} {3} x = -4\\\frac {5} {3} x = 4\\5x = 12\\x = \frac {12} {5}[/tex]

So:

[tex]y = 2x-3\\y = 2 (\frac {12} {5}) - 3\\y = \frac {24} {5} -3\\y = \frac {9} {5}[/tex]

Thus, [tex](\frac {12} {5}, \frac {9} {5})[/tex]is the point of intersection of the lines.

Answer:

The graphic is attached

Ver imagen carlosego
Q&A Education