Respuesta :
Answer:
[tex]F_G=\frac{G\times 6kg\times 8kg}{(2m)^2}[/tex]
Explanation:
Gravity:
[tex]F_G=\frac{Gm_1m_2}{r^2}[/tex]
m1 mass of object 1
m2 mass of object 2
r distance between the center of the two masses
G gravitational constant
The gravitational force is directly proportional to the product of masses of objects. The gravitational force between two given metal balls is [tex]\rm 8.004 \times 10^{-10} \rm \ Nm^2/kg^2[/tex].
To find the gravitational force, use Newton's law of universal gravitation,
[tex]F=G{\dfrac{m_1m_2}{r^2}}[/tex]
Where,
[tex]F[/tex] = force
[tex]G[/tex] = gravitational constant = [tex]6.67 \times 10^{-11} \rm \ Nm^2/kg^2[/tex]
[tex]m_1[/tex] = mass of object 1 = 6 kg
[tex]m_2[/tex] = mass of object 2 = 8 kg
[tex]r[/tex] = distance between centers of the masses = 2 m
Put the values in the formula,
[tex]F =6.67 \times 10^{-11} \rm \ Nm^2/kg^2 \dfrac {6 \times 8}{2^2}\\\\\it F= \rm 8.004 \times 10^{-10} \rm \ Nm^2/kg^2[/tex]
Therefore, the gravitational force between two given metal balls is [tex]\rm 8.004 \times 10^{-10} \rm \ Nm^2/kg^2[/tex].
Learn more about
https://brainly.com/question/858421