A student repeatedly measures the mass of an object using a mechanical balance and gets the following values: 560 g, 562 g, 556 g, 558 g, 560 g, 556 g, 559 g, 561 g, 565 g, 563 g Calculate the standard deviation of his measurements

Respuesta :

Answer: 2.76 g

Step-by-step explanation:

The formula to find the standard deviation:-

[tex]\sigma=\sqrt{\dfrac{\sum(x_i-\overline{x})^2}{n}}[/tex]

The given data values : 560 g, 562 g, 556 g, 558 g, 560 g, 556 g, 559 g, 561 g, 565 g, 563 g.

Then,  [tex]\overline{x}=\dfrac{\sum_{i=1}^{10} x_i}{n}\\\\\Rightarrow\ \overline{x}=\dfrac{560+562+556+558+560+556+559+561+565+563}{10}\\\\\Rightarrow\ \overline{x}=\dfrac{5600}{10}=560[/tex]

Now, [tex]\sum_{i=1}^{10}(x_i-\overline{x})^2=0^2+2^2+(-4)^2+(-2)^2+0^2+(-4)^2+(-1)^2+1^2+5^2+3^2\\\\\Rightarrow\ \sum_{i=1}^{10}(x_i-\overline{x})^2=76[/tex]

Then, [tex]\sigma=\sqrt{\dfrac{76}{10}}=\sqrt{7.6}=2.76[/tex]

Hence, the  standard deviation of his measurements = 2.76 g

Q&A Education