Answer:
m =7.93 kg/s
[tex]A_2=0.054\ m^2[/tex]
Explanation:
Given that
[tex]T_1=920\ K[/tex]
[tex]T_2=510\ K[/tex]
Inlet velocity is small so
[tex]V_1=0[/tex]
[tex]V_2=110\ m/s[/tex]
Power develops ,W= 3220 KW
Now from first law of thermodynamics for open system at steady state
[tex]m.h_1+\dfrac{m.V_1^2}{2000}+Q=m.h_2+\dfrac{m.V_2^2}{2000}+W[/tex]
Here given Q=0
m is the mass flow rate in kg/s.
For air
,[tex]C_p=1.005 KJ/kg.k[/tex]
h = m. Cp. T
[tex]m.h_1=m.h_2+\dfrac{m.V_2^2}{2000}+W[/tex]
[tex]m\times 1.005\times 920=m\times 1.005\times 510+\dfrac{m\times 110^2}{2000}+3220[/tex]
[tex]m\times (1.005\times 920- 1.005\times 510-\dfrac{ 110^2}{2000})=3220[/tex]
So
m =7.93 kg/s
Mass flow rate of air = 7.93 Kg/s
[tex]m=\rho_2A_2V_2[/tex]
For ideal gas air
[tex]\rho_2=\dfrac{P_2}{RT_2}[/tex]
[tex]\rho_2=\dfrac{200}{0.287\times 510}\ kg/m^3[/tex]
[tex]\rho_2=1.33\ kg/m^3[/tex]
[tex]m=\rho_2A_2V_2[/tex]
[tex]7.93=1.33\times A_2\times 110[/tex]
[tex]A_2=0.054\ m^2[/tex]
This is the exit area.