Answer:
Mass of KNO3 in the original mix is 146.954 g
Explanation:
mass of [tex]KNO_3[/tex] in original 254.5 mixture.
moles of [tex]BaSO_4 = \frac{mass}{Molecular\ Weight}[/tex]
moles of[tex] BaSO_4 = \frac{68.3}{233.38}[/tex]
= 0.2926 mol of BaSO4
Therefore,
0.2926 mol of BaCl2,
mass of [tex]BaCl_2 = mol\times molecular weight[/tex]
[tex] = 0.2926\times 208.23[/tex]
= 60.92 g
the AgCl moles [tex]= \frac{mass}{Molecular\ Weight}[/tex]
[tex]= \frac{199.1}{143.32}[/tex]
= 1.3891 mol of AgCl
note that, the Cl- derive from both, [tex]BACl_2 and NaCl[/tex]
so
mole of Cl- f NaCl [tex]= (1.3891) - (0.2926\times 2) = 0.8039[/tex] mol of Cl-
mol of NaCl = 0.8039 moles
[tex]mass = mol\times Molecular\ Weight = 0.8039 \times 58 = 46.626\ g \ of \ NaCl[/tex]
then
KNO3 mass = 254.5 - 60.92-46.626 = 146.954 g of KNO_3
Mass of KNO3 in the original mix is 146.954 g