The dimensions of a rectangular prism are shown below. Length 1 1/3 feet Width 1 foot length 2 1/3 feet. The lengths of the sides of a small cube are 1/3 foot each. How many small cubes can be packed in the rectangular prism?

Respuesta :

Answer:

84 cubes

Step-by-step explanation:

Given,

The dimension of the rectangular prism are,

[tex]1\frac{1}{3}\text{ ft }\times 1\text{ ft }\times 2\frac{1}{3}\text{ ft }[/tex]

Hence, the volume of the prism,

[tex]V=1\frac{1}{3}\times 1\times 2\frac{1}{3}[/tex]

[tex]=\frac{4}{3}\times \frac{7}{3}[/tex]

[tex]=\frac{28}{9}\text{ cube ft}[/tex]

Now, the volume of a cube = side³,

If side = [tex]\frac{1}{3}[/tex] ft,

Then the volume of each cube,

[tex]V'=(\frac{1}{3})^3=\frac{1}{27}\text{ cube ft}[/tex]

Hence, the number of cubes that can be packet in the prism

[tex]=\frac{V}{V'}[/tex]

[tex]=\frac{28/9}{1/27}[/tex]

[tex]=\frac{27\times 28}{9}[/tex]

[tex]=3\times 28[/tex]

[tex]=84[/tex]

Q&A Education