Answer:
[tex]\Delta S = 1581663.5ft^3[/tex]
Explanation:
We need to calculate the change in storage through the changes given,
That is,
[tex]\Delta S = P+I-O-O_{seepage}-E[/tex]
Where the loss are representing by,
[tex]P= Precipitation\\I= Inflow\\O= Outflow\\O_{Seepage}= Outflow by seepage\\E=Evaporation[/tex]
So calculating the values we have
[tex]\Delta S = P+(I-0)-O_{seepage}-E[/tex]
[tex]\Delta S = 4.25+ (30ft^3/s-27ft^3/s)-1.5in-6in[/tex]
The values inside the are parenthesis need to be konverted as I note here.
[tex](30days(24hr/1day)(3600s/1hr)(1acre.ft/43560ft^3)(1/525acres)(12in/1ft)[/tex]
That is,
[tex]\Delta S = 0.83in\Delta S= (0.83in*1ft/12in)(525acres)\\\Delta S=36.31 acres.ft\\\Delta S=36.31acres.ft*(43560ft^3/acrees.ft)\\\Delta S = 1581663.5ft^3[/tex]