Consider the function f(x)=9-x^2/x^2-4 For which intervals is f(x) positive? Check ALL that apply.


a. (-infinity, -3)

b. (-3, -2)

c. (-2, 2)

d. (2, 3)

e. (infinity, 3)

(brainliest will be awarded, rated, and thanked)

Consider the function fx9x2x24 For which intervals is fx positive Check ALL that apply a infinity 3b 3 2 c 2 2d 2 3e infinity 3 brainliest will be awarded rated class=

Respuesta :

Answer:

a. f (x) < 0 for x ∈ (-∞ ,-3)

b. f (x) > 0 for x ∈ (-3,-2)

c. f (x) < 0 for x ∈ (-2,2)

d. f (x) > 0 for x ∈ (2,3)

e.f (x) < 0 for x ∈ (3,∞)

Step-by-step explanation:

Here, the given function is:[tex]f(x)=   \frac{9-x^2}{x^2-4}[/tex]

Now, to check for the sign of f(x) at x = k, put the value of x from the given interval.

We get:

a. (-infinity, -3)

put k = -4 from the given interval

We get [tex]f(-4)=   \frac{9-(-4)^2}{(-4)^2-4}  = \frac{9-16}{16-4}  = \frac{-7}{12}  <0[/tex]

f (x) < 0 for x ∈ (-∞ ,-3)

b. (-3, -2)

put k = -2.5 from the given interval

We get [tex]f(-2.5)=   \frac{9-(-2.5)^2}{(-2.5)^2-4}  = \frac{9-6.25}{6.25-4}  = \frac{2.75}{2.25}  > 0[/tex]

f (x) > 0 for x ∈ (-3,-2)

c. (-2, 2)

put k = 0 from the given interval

We get [tex]f(0)=   \frac{9-(0)^2}{(0)^2-4}  = \frac{9}{-4}  = -\frac{9}{4}  < 0[/tex]

f (x) < 0 for x ∈ (-2,2)

d. (2, 3)

put k =2.5 from the given interval

We get [tex]f(2.5)=   \frac{9-(2.5)^2}{(2.5)^2-4}  = \frac{9-6.25}{6.25-4}  = \frac{2.75}{2.25}  > 0[/tex]

f (x) > 0 for x ∈ (2,3)

e. (infinity, 3)

put k = 4 from the given interval

We get [tex]f(4)=   \frac{9-(4)^2}{(4)^2-4}  = \frac{9-16}{16-4}  = \frac{-7}{12}  <0[/tex]

f (x) < 0 for x ∈ (3,∞)

Answer:

b and d

Step-by-step explanation:

took test

Q&A Education