Respuesta :

Answer:

11.0845g of [tex]HBO_2[/tex] is produced from the combustion of 96.9 g of [tex]B_2H_6[/tex]

Explanation:

Given:

mass of  [tex]B_2H_6[/tex] used in combustion= 96.9 g

To find:

amount  of   [tex]HBO_2[/tex] produced=?

Solution:

Let us find the molecular mass of[tex]B_2H_6[/tex]

Atomic weight of Boron(B)=10.811

Atomic weight of Hydrogen(H)=1.007

Now the molecular mass of [tex]B_2H_6[/tex]

=>2(10.811)+6(1.007)

=>21.622 x 6.042

=>27.664

In the given 96.9 g of [tex]B_2H_6[/tex], the number of moles of [tex]B_2H_6[/tex]present is

[tex]96.9 g \text { of } B_2 H_6 \times \frac{1 \text { mol of } B_2 H_6}{27.666g B_2 H _6}=3.50 \text { moles of } B _2 H _6[/tex]

So in 96.9 g of B2H6, 3.50  moles of   B2H6  is present  which is converted into 2 molecules of  [tex]HBO_2[/tex]

The molecular mass of  [tex]HBO_2[/tex] is

Atomic weight of Boron(B)=10.811

Atomic weight of Hydrogen(H)=1.007

Atomic weight of Oxygen(O)=15.9994

=> 10.811+1.007+2(15.9994)

=>10.811+1.007+31.998

=>43.816

Convert 3.50 moles of [tex]B_2H_6[/tex] to HBO2  [tex]HBO_2[/tex]

=>[tex]3.50 \text { moles of } B_2 H _6 \times \frac{2 \text { moles of } HBO_2}{1 \text { mole of } B _2H _6}}[/tex]

=>[tex]3.50\times \frac {2\times (43.816)}{27.666}[/tex]

=>[tex]3.50\times \frac{87.632}{27.666}[/tex]

=>[tex]3.50\times 3.167[/tex]

=>11.0845

Q&A Education