One end of a horizontal rope is attached to a prong of anelectrically driven tuning fork that vibrates at 120 Hz. The otherend passes over a pulley and supports a 1.70 kg mass. The linear mass density of the rope is0.0590 kg/m.(a) What is the speed of a transverse wave onthe rope?v1.70 kg =1 m/s(b) What is the wavelength?λ1.70 kg =2 m(c) How would your answers to parts (a) and (b) be changed if themass were increased to 2.80 kg?v2.80 kg = 3v1.70 kgλ2.80kg = 4λ1.70 kg

Respuesta :

Answer:

(a) [tex]v=16.804\ m.s^{-1}[/tex]

(b) [tex]\lambda=1.4875\ cm [/tex]

(c)

  • [tex]F_T=27.44\ N[/tex]
  • [tex]v=21.57\ m.s^{-1}[/tex]

and

  • [tex]\lambda=17.97\ cm [/tex]

Explanation:

Given:

  • frequency of vibration, [tex]f=120\ Hz[/tex]
  • mass of object attached to the rope, [tex]m=1.7\ kg[/tex]
  • linear mass density of rope, [tex]\mu=0.059\ kg.m^{-1}[/tex]

(a)

We have the expression for velocity as:

[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex] .................(1)

where:

[tex]F_T=[/tex] tension force in the rope

Now for tension force we balance the forces acting on the rope:

[tex]T=m.g[/tex]

[tex]T=1.7\times 9.8[/tex]

[tex]T=16.66\ N[/tex]

Now using eq. (1)

[tex]v=\sqrt{\frac{16.66}{0.059} }[/tex]

[tex]v=16.804\ m.s^{-1}[/tex]

(b)

Wavelength is given by:

[tex]\lambda=\frac{v}{f}[/tex]

[tex]\lambda=\frac{16.66}{120}[/tex]

[tex]\lambda=1.4875\ cm [/tex]

(c)

  • On increasing the mass to 2.8 kg

We get :

[tex]F_T=27.44\ N[/tex]

[tex]v=21.57\ m.s^{-1}[/tex]

and

[tex]\lambda=17.97\ cm [/tex]

Q&A Education