Answer:
(a) [tex]v=16.804\ m.s^{-1}[/tex]
(b) [tex]\lambda=1.4875\ cm [/tex]
(c)
and
Explanation:
Given:
(a)
We have the expression for velocity as:
[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex] .................(1)
where:
[tex]F_T=[/tex] tension force in the rope
Now for tension force we balance the forces acting on the rope:
[tex]T=m.g[/tex]
[tex]T=1.7\times 9.8[/tex]
[tex]T=16.66\ N[/tex]
Now using eq. (1)
[tex]v=\sqrt{\frac{16.66}{0.059} }[/tex]
[tex]v=16.804\ m.s^{-1}[/tex]
(b)
Wavelength is given by:
[tex]\lambda=\frac{v}{f}[/tex]
[tex]\lambda=\frac{16.66}{120}[/tex]
[tex]\lambda=1.4875\ cm [/tex]
(c)
We get :
[tex]F_T=27.44\ N[/tex]
[tex]v=21.57\ m.s^{-1}[/tex]
and
[tex]\lambda=17.97\ cm [/tex]