The volume density of atoms for a bcc lattice is 5 x 1026 m-3. Assume that the atoms are hard spheres with each atom touching its nearest neighbors. Determine the lattice constant and effective radius of the atom.

Respuesta :

Explanation:

It is known that for a body centered cubic unit cell there are 2 atoms per unit cell.

This means that volume occupied by 2 atoms is equal to volume of the unit cell.

So, according to the volume density

        [tex]5 \times 10^{26} atoms = 1 [tex]m^{3}[/tex]

        2 atoms = [tex]\frac{1 m^{3}}{5 \times 10^{26} atoms} \times 2 atoms[/tex]

                     = [tex]4 \times 10^{-27} m^{3}[/tex]

Formula for volume of a cube is [tex]a^{3}[/tex]. Therefore,

           Volume of the cube = [tex]4 \times 10^{-27} m^{3}[/tex]

As lattice constant (a) = [tex](4 \times 10^{-27} m^{3})^{\frac{1}{3}}[/tex]

                                   = [tex]1.59 \times 10^{-9} m[/tex]

Therefore, the value of lattice constant is [tex]1.59 \times 10^{-9} m[/tex].

And, for bcc unit cell the value of radius is as follows.

                 r = [tex]\frac{\sqrt{3}}{4}a[/tex]

Hence, effective radius of the atom is calculated as follows.

                 r = [tex]\frac{\sqrt{3}}{4}a[/tex]

                   = [tex]\frac{\sqrt{3}}{4} \times 1.59 \times 10^{-9} m[/tex]

                   = [tex]6.9 \times 10^{-10} m[/tex]

Hence, the value of effective radius of the atom is [tex]6.9 \times 10^{-10} m[/tex].

Q&A Education