Respuesta :

Option C:

[tex]2 g^{3}-5 g^{2}+6[/tex]

Solution:

Given expression:

[tex]$\frac{\left(5 g^{4}+5 g^{3}-17 g^{2}+6 g\right)-\left(3 g^{4}+6 g^{3}-7 g^{2}-12\right)}{g+2}[/tex]

To find which expression is equal to the given expression.

[tex]$\frac{\left(5 g^{4}+5 g^{3}-17 g^{2}+6 g\right)-\left(3 g^{4}+6 g^{3}-7 g^{2}-12\right)}{g+2}[/tex]

Expand the term [tex]-\left(3 g^{4}+6 g^{3}-7 g^{2}-12\right):-3 g^{4}-6 g^{3}+7 g^{2}+12[/tex]

         [tex]$=\frac{5 g^{4}+5 g^{3}-17 g^{2}+6 g- 3 g^{4}-6 g^{3}+7 g^{2}+12}{g+2}[/tex]

Arrange the like terms together.

         [tex]$=\frac{5 g^{4}- 3 g^{4}+5 g^{3}-6 g^{3}-17 g^{2}+7 g^{2}+6 g+12}{g+2}[/tex]

         [tex]$=\frac{2 g^{4}- g^{3}-10 g^{2}+6 g+12}{g+2}[/tex]

Factor the numerator [tex]2 g^{4}-g^{3}-10 g^{2}+6 g+12=(g+2)\left(2 g^{3}-5 g^{2}+6\right)[/tex]

         [tex]$=\frac{(g+2)\left(2 g^{3}-5 g^{2}+6\right)}{g+2}[/tex]

Cancel the common factor g + 2, we get

         [tex]=2 g^{3}-5 g^{2}+6[/tex]

Hence option C is the correct answer.

Answer:

C.

Step-by-step explanation:

Ver imagen dr032169
Q&A Education