Answer:
ΔP = -3556.36 Pa
Explanation:
Atmospheric pressure, P = 101300 Pa
Latent heat of boiling water, [tex]L_{B} = 2.256 * 10^{6} J/kg[/tex]
Boiling point at atmospheric pressure, T = 373.15 K
ΔT = 1 K
The change in volume as the water boils to vapor will be
[tex]\triangle V = V_{v} - V_{l}[/tex]
Since the volume of vapor ([tex]V_{v}[/tex]) is far greater than the volume of liquid ([tex]V_{l}[/tex])
[tex]\triangle V = V_{v}[/tex]
Using the ideal gas equation:
[tex]PV_{v} = RT\\V_{v} = RT/P[/tex]
R = 8.314 J/mol-K
[tex]V_{v} = \frac{8.314 * 373.15}{101300} \\V_{v} = 0.0306 m^{3}[/tex]
ΔV = 0.0306 m³
Molecular weight of water, MW = 0.018 kg/mol
Using the Clausius - Clapeyron equation:
[tex]\triangle P = \frac{L_B \triangle T}{T \triangle V}* MW\\\triangle P = \frac{2.256 * 10^{6} *1}{373.15* 0.0306}* 0.018[/tex]
ΔP = -3556.36 Pa
But the pressure change is said to lower the boiling point of water, only a negative pressure change will lower the boiling point.
ΔP = 3556.36 Pa