Answer:[tex]\vec{v_R}=\hat{i}[-329.11]+\hat{j}[516.18][/tex]
Explanation:
Given
Plane is initially flying with velocity of magnitude [tex]v=600\ mph[/tex]
at angle of [tex]40^{\circ}[/tex] with North towards west
Velocity of plane airplane can be written as
[tex]v_a=600(-\sin 40\hat{i}+\cos 40\hat{j})[/tex]
Now wind is encountered with speed of [tex]v=80\ mph[/tex] at angle of [tex]N45^{\circ}E[/tex]
[tex]v_w=80(\cos 45\hat{i}+\sin 45\hat{j})[/tex]
resultant velocity
[tex]\vec{v_R}=\vec{v_a} +\vec{v_w}[/tex]
[tex]\vec{v_R}=600(-\sin 40\hat{i}+\cos 40\hat{j})+ 80(\cos 45\hat{i}+\sin 45\hat{j})[/tex]
[tex]\vec{v_R}=\hat{i}[-385.67+56.56]+\hat{j}[459.62+56.56][/tex]
[tex]\vec{v_R}=\hat{i}[-329.11]+\hat{j}[516.18][/tex]
for direction [tex]\tan \theta =\frac{516.18}{329.11}[/tex]
[tex]\tan \theta =1.568[/tex]
[tex]\theta =57.47^{\circ}[/tex] west of North