Respuesta :

Answer:

General solution is

 [tex]x = n \pi + \frac{\pi }{8}[/tex]

Step-by-step explanation:

Step(i):-

Given  cos x - sin x = √2 cos (3 x)

Dividing '√2' on both sides , we get

[tex]\frac{1}{\sqrt{2} } cos (x) - \frac{1}{\sqrt{2} } sin (x) = \frac{\sqrt{2} cos (3 x)}{\sqrt{2} }[/tex]

we will use trigonometry formulas

a) Cos ( A + B) = Cos A Cos B - sin A sin B

b)  [tex]cos \frac{\pi }{4} = \frac{1}{\sqrt{2} }[/tex]

Step(ii):-

[tex]\frac{1}{\sqrt{2} } cos (x) - \frac{1}{\sqrt{2} } sin (x) = \frac{\sqrt{2} cos (3 x)}{\sqrt{2} }[/tex]

[tex]cos (\frac{\pi }{4} ) cos x - sin(\frac{\pi }{4} ) sin x = cos 3x[/tex]

[tex]cos (\frac{\pi }{4}+x ) = cos 3 x[/tex]

Step(iii):-

General solution of  cos x = cos ∝  is  x = 2 nπ+∝

we have [tex]cos (\frac{\pi }{4}+x ) = cos 3 x[/tex]

The general solution of  [tex]cos (\frac{\pi }{4}+x ) = cos 3 x[/tex] is

⇒  [tex]3 x = 2 n \pi + (\frac{\pi }{4}+x )[/tex]

⇒ [tex]3 x- x = 2 n \pi + \frac{\pi }{4}[/tex]

 [tex]2x = 2 n \pi + \frac{\pi }{4}[/tex]

final answer:-

General solution is

 [tex]x = n \pi + \frac{\pi }{8}[/tex]

             

Q&A Education