Respuesta :
Answer:
[tex]V_2 = 4.87 * 10^3[/tex]
Explanation:
This question is an illustration of ideal Gas Law;
The given parameters are as follows;
Initial Temperature = 25C
Initial Volume = 4.5 * 10³L
Required
Calculate the volume when temperature is 50C
NB: Pressure remains constant;
Ideal Gas Law states that;
[tex]PV = nRT[/tex]
The question states that the pressure is constant; this implies that the constant in the above formula are P, R and n
Divide both sides by PT
[tex]\frac{PV}{PT} = \frac{nRT}{PT}[/tex]
[tex]\frac{V}{T} = \frac{nR}{P}[/tex]
Represent [tex]\frac{nR}{P}[/tex] with k
[tex]\frac{V}{T} = k[/tex]
[tex]k = \frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
At this point, we can solve for the required parameter using the following;
[tex]\frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
Where V1 and V2 represent the initial & final volume and T1 and T2 represent the initial and final temperature;
From the given parameters;
V1 = 4.5 * 10³L
T1 = 25C
T2 = 50C
Convert temperatures to degree kelvin
V1 = 4.5 * 10³L
T1 = 25 +273 = 298K
T2 = 50 + 273 = 323K
Substitute values for V1, T1 and T2 in [tex]\frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
[tex]\frac{4.5 * 10^3}{298} = \frac{V_2}{323}[/tex]
Multiply both sides by 323
[tex]323 * \frac{4.5 * 10^3}{298} = \frac{V_2}{323} * 323[/tex]
[tex]323 * \frac{4.5 * 10^3}{298} = V_2[/tex]
[tex]V_2 = 323 * \frac{4.5 * 10^3}{298}[/tex]
[tex]V_2 = \frac{323 * 4.5 * 10^3}{298}[/tex]
[tex]V_2 = \frac{1453.5 * 10^3}{298}[/tex]
[tex]V_2 = 4.87 * 10^3[/tex]
Hence, the final volume at 50C is [tex]V_2 = 4.87 * 10^3[/tex]