A model rocket is launched with an initial upward velocity of 215 ft/s. The rocket's height h (in feet) after t seconds is given by the following.

h=215t-16t^2

Find all values of t for which the rocket's height is 97 feet.

Respuesta :

Given:

h=215t-16t^2

the rocket's height is 97 feet.
Substituting the value of h.
97 = 215 t-16 t^2
Rearranging,
-16 t^2 - 97+ 215 t = 0
or 
16 t^2 - 215 t + 97 = 0
Solving the equation using quadratic formula:
We get two values of t.
t = 12.97
t = 0.46

Answer:

t=12.97 seconds  

t=0.47 seconds

Step-by-step explanation:

Given :

A model rocket is launched with an initial upward velocity of 215 ft/s.

The rocket's height h (in feet) after t seconds : [tex]h=215t-16t^2[/tex]

To Find:  

Find all values of t for which the rocket's height is 97 feet.

Solution :

[tex]h=215t-16t^2[/tex]

Since we are given that height = 97 feet

[tex]97=215t-16t^2[/tex]

[tex]16t^2-215t+97=0[/tex]

Using quadratic formula : [tex]t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

a = 16  

b = -215  

c = 97  

 [tex]t=\frac{215\pm\sqrt{(-215)^2-4\times16\times 97}}{2\times 16}[/tex]

  [tex]t=\frac{215\pm\sqrt{40017}}{32}[/tex]

t = 12.970077983916697359451253891375  

t = 0.46742201608330264054874610862542  

Thus  all values of t for which the rocket's height is 97 feet:

t=12.97 seconds  

t=0.47 seconds

Q&A Education