Respuesta :
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69