The ball's horizontal position in the air is
[tex]x=\left(27.5\dfrac{\rm m}{\rm s}\right)\cos38.5^\circ t[/tex]
It hits the wall when [tex]x=17.5\,\mathrm m[/tex], which happens at
[tex]17.5\,\mathrm m=\left(27.5\dfrac{\rm m}{\rm s}\right)\cos38.5^\circ t\implies t\approx0.813\,\mathrm s[/tex]
Meanwhile, the ball's vertical position is
[tex]y=\left(27.5\dfrac{\rm m}{\rm s}\right)\sin38.5^\circ t-\dfrac g2t^2[/tex]
where [tex]g[/tex] is the acceleration due to gravity, 9.80 m/s^2.
At the time the ball hits the wall, its vertical position (relative to its initial position) is
[tex]y=\left(27.5\dfrac{\rm m}{\rm s}\right)\sin38.5^\circ(0.813\,\mathrm s)-\dfrac g2(0.813\,\mathrm s)^2\approx\boxed{10.7\,\mathrm m}[/tex]