Respuesta :
Answer:
[tex](-2,0)[/tex] and [tex](3,5)[/tex]
Step-by-step explanation:
we have
[tex]y+4=x^{2}[/tex] -----> equation A
Is a vertical parabola open upward
[tex]y-x=2[/tex] ----> equation B
Is the equation of a line
we know that
The solution of the system of equations is the intersection point both graphs
Using a graphing tool
The intersection points are [tex](-2,0)[/tex] and [tex](3,5)[/tex]
see the attached figure
The solution set of the system of equation is (c) (-2,0) and (3,5)
How to determine the solution set?
The system of equations is given as:
y + 4 = x^2
y - x = 2
Next, we plot the equations
From the graph of the equations (see attachment), we have:
(x,y) = (-2,0) and (3,5)
Hence, the solution set of the system of equation is (c) (-2,0) and (3,5)
Read more about system of equation at:
https://brainly.com/question/14323743
#SPJ5