Respuesta :
I hope this helps you
f(2)=2^2+2.2-1=4+4-1=7
f (-2)=(-2)^2+2. (-2)-1 =4-4-1= -1
f (3)=3^2+2.3-1=9+6-1=14
f (-3)=(-3)^2+2. (-3)-1=9-6-1=2
f(2)=2^2+2.2-1=4+4-1=7
f (-2)=(-2)^2+2. (-2)-1 =4-4-1= -1
f (3)=3^2+2.3-1=9+6-1=14
f (-3)=(-3)^2+2. (-3)-1=9-6-1=2
Answer:
The pair of coordinates of domain and range are (2,7),(-2,1),(3,14) and (-3,2).
Step-by-step explanation:
Domain is the set of inputs of x values and range is the set of outputs or f(x) values.
The given function is
[tex]f(x)=x^2+2x-1[/tex]
Substitute x=2 in the given function,
[tex]f(2)=(2)^2+2(2)-1=7[/tex]
The value of the function is 7 at x=2.
Substitute x=-2 in the given function,
[tex]f(-2)=(-2)^2+2(-2)-1=-1[/tex]
The value of the function is -1 at x=-2.
Substitute x=3 in the given function,
[tex]f(3)=(3)^2+2(3)-1=14[/tex]
The value of the function is 14 at x=3.
Substitute x=-3 in the given function,
[tex]f(-3)=(-3)^2+2(-3)-1=2[/tex]
The value of the function is 2 at x=-3.
Therefore the pair of coordinates of domain and range are (2,7),(-2,1),(3,14) and (-3,2).