Respuesta :

Space

Answer:

[tex]\displaystyle f'(t) = \frac{-2 \arccos t}{\sqrt{1 - t^2}}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(t) = (\arccos t)^2[/tex]

Step 2: Differentiate

  1. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle f'(t) = 2 \arccos t (\arccos t)'[/tex]
  2. Trigonometric Differentiation:                                                                       [tex]\displaystyle f'(t) = \frac{-2 \arccos t}{\sqrt{1 - t^2}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Q&A Education