I have [tex] \frac{dx}{dt} = \frac{5}{x} [/tex] and [tex]x(0)=7[/tex] and I'm supposed to find x(t)
I did it as follows:
[tex]x dx=5dt[/tex]
[tex] \int\ {x} \, dx = \int\ {5} \, dt[/tex]
[tex] \frac{x^2}{2} = 5t +c[/tex]
[tex] \frac{7^2}{2} = 5(0) +c[/tex]
And from this i obtain [tex]c= \frac{49}{2} [/tex] but apparently this is not correct.

Respuesta :

[tex]\bf \cfrac{dx}{dt}=\cfrac{5}{t}\quad ,\quad x(0)=7\to \begin{cases} f(t)=0\\ t=7 \end{cases}\\\\ -----------------------------\\\\ \displaystyle \int \cfrac{5}{t}\cdot dt\implies 5\int \cfrac{1}{t}\cdot dt\implies 5ln|t|+C= f(t) \\\\\\ \textit{now, we know when f(t)=0, t=7}\implies 5ln|7|+C=0 \\\\\\ C=-5ln(7) \\\\\\ thus\implies \boxed{5ln|t|-5ln(7)=f(t)=x}[/tex]

notice |7| 7 is positive, so we can simply remove the bars and use 7 by itself

Q&A Education