What are the period and phase shift for f(x) = 5 tan(2x − π)?

Period: π; phase shift: x = pi over two
Period: π; phase shift: x = negative pi over two
Period: pi over two; phase shift: x = negative pi over two
Period: pi over two; phase shift: x = pi over two
I think it is A.. Please explain

Respuesta :

period: pi/2; phase shift: x = -pi/2

Answer:

D. [tex]\text{Period}=\frac{\pi}{2}[/tex]; Phase shift [tex]x=\frac{\pi}{2}[/tex]

Step-by-step explanation:

We have been given a function [tex]f(x)=5\text{ tan}(2x-\pi)[/tex]. We are asked to find the period and phase shift for the given function.

We will use formula [tex]f(x)=a\cdot \text{tan}(bx-c)+d[/tex], where,

a = Amplitude,

[tex]\text{Period}=\frac{\pi}{|b|}[/tex]

[tex]\text{Phase shift}=\frac{c}{b}[/tex]

d = Vertical shift.

Upon substituting the given values we will get period of the given function as:

[tex]\text{Period}=\frac{\pi}{|2|}=\frac{\pi}{2}[/tex]

We can find phase shift for our given function as:

[tex]x=\frac{\pi}{2}[/tex]

Therefore, option D is the correct choice.

Q&A Education