This is a question on my partial fractions homework, but no matter what I try I can't figure it out..
[tex] \int\limits^2_0 {\frac{(x^2+x+1)}{(x+1)^2(x+2)} } \, dx

[/tex]

Respuesta :

[tex]\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{a_1x+a_0}{(x+1)^2}+\dfrac b{x+2}[/tex]
[tex]\implies\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{(a_1x+a_0)(x+2)+b(x+1)^2}{(x+1)^2(x+2)}[/tex]
[tex]\implies x^2+x+1=(a_1+b)x^2+(2a_1+a_0+2b)x+(2a_0+b)[/tex]
[tex]\implies\begin{cases}a_1+b=1\\2a_1+a_0+2b=1\\2a_0+b=1\end{cases}\implies a_1=-2,a_0=-1,b=3[/tex]

So you have

[tex]\displaystyle\int_0^2\frac{x^2+x+1}{(x+1)^2(x+2)}\,\mathrm dx=-2\int_0^2\frac x{(x+1)^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}[/tex]
[tex]=\displaystyle-2\int_1^3\dfrac{x-1}{x^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}[/tex]

where in the first integral we substitute [tex]x\mapsto x+1[/tex].

[tex]=\displaystyle-2\int_1^3\left(\frac1x-\frac1{x^2}\right)\,\mathrm dx-\frac1{1+x}\bigg|_{x=0}^{x=2}+3\ln|x+2|\bigg|_{x=0}^{x=2}[/tex]
[tex]=-2\left(\ln|x|+\dfrac1x\right)\bigg|_{x=1}^{x=3}-\dfrac23+3(\ln4-\ln2)[/tex]
[tex]=-2\left(\ln3+\dfrac13-1\right)-\dfrac23+3\ln2[/tex]
[tex]=\dfrac23+\ln\dfrac89[/tex]
Q&A Education