Answer:
[tex]\sf x = 150[/tex]
Step-by-step explanation:
To find the value of [tex]\sf x [/tex], we can set up an equation based on the sum of the angle measures in a quadrilateral, which is [tex]\sf 360^\circ [/tex].
Given angles:
- [tex]\sf \dfrac{1}{3}x [/tex]
- [tex]\sf (x - 20)^\circ [/tex]
- [tex]\sf (x - 10)^\circ [/tex]
- [tex]\sf 40^\circ [/tex]
The sum of these angles must be [tex]\sf 360^\circ [/tex].
So, we can write the equation:
[tex]\sf \dfrac{1}{3}x + (x - 20) + (x - 10) + 40 = 360 [/tex]
Now, let's solve for [tex]\sf x [/tex]:
[tex]\sf \dfrac{1}{3}x + x - 20 + x - 10 + 40 = 360 [/tex]
Combine like terms:
[tex]\sf \dfrac{1}{3}x + 2x - 30 + 40 = 360 [/tex]
[tex]\sf \dfrac{1}{3}x + 2x + 10 = 360 [/tex]
Subtract 10 from both sides:
[tex]\sf \dfrac{1}{3}x + 2x + 10 -10 = 360 -10 [/tex]
[tex]\sf \dfrac{1}{3}x + 2x = 350 [/tex]
Multiply both sides by 3.
[tex]\sf \dfrac{1}{3}x \cdot 3 + 2x \cdot 3 = 350 \cdot 3 [/tex]
[tex] \sf x + 6x = 1050[/tex]
[tex]\sf 7x = 1050 [/tex]
Divide both sides by 7:
[tex]\sf x = \dfrac{1050}{7} [/tex]
[tex]\sf x = 150 [/tex]
So, the value of [tex]\sf x [/tex] is 150.