What is the factorization of 216x^12 – 64?
a. (6x^3 – 4)(36x^6 + 24x^3 + 16)
b. (6x^3 – 4)(36x^9 + 24x^3 + 16)
c. (6x^4 – 4)(36x^8 + 24x^4 + 16)
d. (6x^4 – 4)(36x^12 + 24x^4 + 16)

Respuesta :

[tex]216x^{12}-64=8(27x^{12} - 8) = 8[(3x^{4})^{3} - 2^{3}] = \\ \\ =8(3x^{4}-2)(9x^{8} +6x^{4} +4) = 2(3x^{4}-2)*4(9x^{8}+6x^{4}+4)= \\ \\ (6x^{4}-4)(36x^{8}+24x^{4}+16)[/tex]

~~~~~~~~~~~~~~~~~~~~

a^3-b^3=(a-b)(a^2+ab+b^2)

==================================

"Associate with people who are likely to improve you."

Answer:c on edge

Step-by-step explanation:

just did it on test

Q&A Education