(a) Use u = -∇z(2, 5)/||∇f(2, 5)||
= -<-4x, -4y>/||<-4x, -4y>|| {at (2, 5)}
= <8, 20>/√((-8)^2 + (-20)^2)
= <2, 5>/√29
(b) Du f(2, 5) = ∇z(2, 5) · u
= ∇z(2, 5) · -∇z(2, 5)/||∇f(2, 5)||
= -||∇z(2, 5)||^2 / ||∇f(2, 5)||
= -||∇z(2, 5)||
= -4√29