What is the area in square units of triangle QRS also show work
Answer:
The correct option is : A. 7
Step-by-step explanation:
According to the below diagram, for rectangle AQBC, the length [tex]=5[/tex] units and the width [tex]= 4[/tex] units.
So, the area of the rectangle [tex]= (length\times width)= (5\times 4)= 20[/tex] square units.
For [tex]\triangle AQS,[/tex] base[tex](AS)= 3[/tex] units and height[tex](AQ)= 4[/tex] units.
So, area of [tex]\triangle AQS[/tex] [tex]=\frac{1}{2}\times base \times height =\frac{1}{2}(3)(4)=6[/tex] square units.
For [tex]\triangle CSR,[/tex] base[tex](CR)= 2[/tex] units and height[tex](CS)= 2[/tex] units.
So, area of [tex]\triangle CSR[/tex] [tex]=\frac{1}{2}\times base \times height =\frac{1}{2}(2)(2)=2[/tex] square units.
For [tex]\triangle BQR,[/tex] base[tex](BR)= 2[/tex] units and height[tex](BQ)= 5[/tex] units.
So, area of [tex]\triangle BQR[/tex] [tex]=\frac{1}{2}\times base \times height =\frac{1}{2}(2)(5)=5[/tex] square units.
Now, total area of [tex]\triangle AQS[/tex], [tex]\triangle CSR[/tex] and [tex]\triangle BQR[/tex] [tex]=(6+2+5)= 13[/tex] square units.
Thus, the area of [tex]\triangle QRS[/tex] =(Area of rectangle AQBC)-(Area of [tex]\triangle AQS[/tex], [tex]\triangle CSR[/tex] and [tex]\triangle BQR[/tex]) [tex]=(20-13)= 7[/tex] square units.