Answer:
Option (d) is a valid exclusion for the given algebraic fraction
(d) a ≠ 0, b ≠ 0, a ≠ 2b
Step-by-step explanation:
Given algebraic expression [tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex]
We have to find the conditions which is valid exclusion for the algebraic fraction [tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex].
Consider , the given algebraic expression ,
[tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex]
We first solve the given fraction in simplest form ,
Taking 4ab common from denominator, we get,
[tex]\frac{8ab^2x}{4ab(a-2b)}[/tex]
Solving the fraction , we get,
[tex]\frac{2bx}{(a-2b)}[/tex]
For the above fraction to be valid denominator has to be non zero, that is
[tex]a-2b\neq 0\\\\\\ \Rightarrow a\neq 2b[/tex]
Thus, option (d) is a valid exclusion for the given algebraic fraction