Which of the following is a valid exclusion for the algebraic fraction 8ab^2x/4a^2b-8ab^2

(the up arrow means that the following number is an exponent)

a) a ≠ 0, b ≠ 0
b) a ≠ 0, b ≠ 0, a ≠ b
c) b ≠ 0, a ≠ b
d) a ≠ 0, b ≠ 0, a ≠ 2b

Respuesta :

Answer:

Option (d) is a valid exclusion for the given  algebraic fraction

(d) a ≠ 0, b ≠ 0, a ≠ 2b

Step-by-step explanation:

   Given algebraic expression  [tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex]

We have to find the conditions  which is valid exclusion for the algebraic fraction [tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex].

Consider , the given algebraic expression ,

[tex]\frac{8ab^2x}{4a^2b-8ab^2}[/tex]

We first solve the given fraction in simplest form ,

Taking 4ab common from denominator, we get,

[tex]\frac{8ab^2x}{4ab(a-2b)}[/tex]

Solving the fraction , we get,

[tex]\frac{2bx}{(a-2b)}[/tex]

For the above fraction to be valid denominator has to be non zero, that is

[tex]a-2b\neq 0\\\\\\ \Rightarrow a\neq 2b[/tex]

Thus, option (d) is a valid exclusion for the given  algebraic fraction

Q&A Education